好房网

网站首页 游戏 > 正文

如图多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$和四棱锥$P-ABCD$组成.正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$棱长为$2$四棱锥$P-ABCD$侧棱长都相等高为$1$.(Ⅰ)求证$B_{1}C\bot($平面$PCD$;(Ⅱ)求二面角$B-PB_{1}-C$的余弦值.","title_text":"如图多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}

2022-08-04 01:21:09 游戏 来源:
导读 想必现在有很多小伙伴对于如图,多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$和四棱锥$P-ABCD$组成 正方体$ABC

想必现在有很多小伙伴对于如图,多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$和四棱锥$P-ABCD$组成.正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$棱长为$2$,四棱锥$P-ABCD$侧棱长都相等,高为$1$.(Ⅰ)求证:$B_{1}C\bot $平面$PCD$;(Ⅱ)求二面角$B-PB_{1}-C$的余弦值.","title_text":"如图,多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$和四棱锥$P-ABCD$组成.正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$棱长为$2$,四棱锥$P-ABCD$侧棱长都相等,高为$1$.(Ⅰ)求证:$B_{1}C\bot $平面$PCD$;(Ⅱ)求二面角$B-PB_{1}-C$的余弦值.方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如图,多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$和四棱锥$P-ABCD$组成.正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$棱长为$2$,四棱锥$P-ABCD$侧棱长都相等,高为$1$.(Ⅰ)求证:$B_{1}C\bot $平面$PCD$;(Ⅱ)求二面角$B-PB_{1}-C$的余弦值.","title_text":"如图,多面体$PABCDA_{1}B_{1}C_{1}D_{1}$由正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$和四棱锥$P-ABCD$组成.正方体$ABCD-A_{1}B_{1}C_{1}D_{1}$棱长为$2$,四棱锥$P-ABCD$侧棱长都相等,高为$1$.(Ⅰ)求证:$B_{1}C\bot $平面$PCD$;(Ⅱ)求二面角$B-PB_{1}-C$的余弦值.方面的知识分享给大家,希望大家会喜欢哦。

1、(Ⅰ)证明:以$D_{1} $为坐标原点,分别以$D_{1}A_{1}$,$D_{1}C_{1}$,$D_{1}D$所在直线为$x$,$y$,$z$轴建立空间直角坐标系$,$

2、由已知可得:$B_{1}left(2,2,0right)$,$Cleft(0,2,2right)$,$Pleft(1,1,3right)$,$Dleft(0,0,2right)$,$Bleft(2,2,2right)$,

3、则$overrightarrow {B_{1}C}=left(-2,0,2right),overrightarrow {CD}=left(0,-2,0right),overrightarrow {CP}=left(1,-1,1right)$,

4、$because overrightarrow {B_{1}C}cdot overrightarrow {CD}=0,overrightarrow {B_{1}C}cdot overrightarrow {CP}=0,therefore B_{1}Cbot CD,B_{1}Cbot CP$,

5、又$CDcap CP=C$,$therefore B_{1}Cbot $平面$PCD$;

6、(Ⅱ$) $设平面$CPB_{1} $的一个法向量为$overrightarrow {n}=left(x,y,zright)$.

7、由$left{begin{array}{l}overrightarrow {n}cdot overrightarrow {B_{1}C}=-2x+2z=0overrightarrow {n}cdot overrightarrow {CP}=x-y+z=0end{array}right.$,取$z=1$,可得$overrightarrow {n}=left(1,2,1right)$.

8、又平面$BPB_{1} $的一个法向量$overrightarrow {m}=left(2,-2,0right)=2left(1,-1,0right)$,

9、$therefore cos lt overrightarrow {m}$,$overrightarrow {n} gt =xlongequal[|overrightarrow {m}|cdot |overrightarrow {n}|]{overrightarrow {m}cdot overrightarrow {n}}=dfrac{1-2}{sqrt {2}times sqrt {6}}=-dfrac{sqrt {3}}{6}$.

10、由图可知,二面角$B-PB_{1}-C$为钝二面角,

11、$therefore $二面角$B-PB_{1}-C$的余弦值为$-dfrac{sqrt {3}}{6}$.

本文到此结束,希望对大家有所帮助。


版权说明: 本文由用户上传,如有侵权请联系删除!


标签: